高中学习

高一数学知识点总结期末必备

作者:淑娟   发表于:
浏览:8次    字数:5516  原创
级别: 文学秀才   总稿:59891篇,  月稿:0

  高一数学怎么学?听课精力要合理分配,课堂笔记应简明扼要,今天小编在这给大家整理了高一数学知识点总结,接下来随着小编一起来看看吧!

  高一数学知识点总结(一)

  一、高中数学函数的有关概念

  1.高中数学函数函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于函数A中的任意一个数x,在函数B中都有确定的数f(x)和它对应,那么就称f:A→B为从函数A到函数B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的函数{f(x)|x∈A}叫做函数的值域.

  注意:

  函数定义域:能使函数式有意义的实数x的函数称为函数的定义域。

  求函数的定义域时列不等式组的主要依据是:

  (1)分式的分母不等于零;

  (2)偶次方根的被开方数不小于零;

  (3)对数式的真数必须大于零;

  (4)指数、对数式的底必须大于零且不等于1.

  (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的函数.

  (6)指数为零底不可以等于零,

  (7)实际问题中的函数的定义域还要保证实际问题有意义.

  ?相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)

  2.高中数学函数值域:先考虑其定义域

  (1)观察法

  (2)配方法

  (3)代换法

  3.函数图象知识归纳

  (1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的函数C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.

  (2)画法

  A、描点法:

  B、图象变换法

  常用变换方法有三种

  1)平移变换

  2)伸缩变换

  3)对称变换

  4.高中数学函数区间的概念

  (1)函数区间的分类:开区间、闭区间、半开半闭区间

  (2)无穷区间

  5.映射

  一般地,设A、B是两个非空的函数,如果按某一个确定的对应法则f,使对于函数A中的任意一个元素x,在函数B中都有确定的元素y与之对应,那么就称对应f:AB为从函数A到函数B的一个映射。记作“f(对应关系):A(原象)B(象)”

  对于映射f:A→B来说,则应满足:

  (1)函数A中的每一个元素,在函数B中都有象,并且象是的;

  (2)函数A中不同的元素,在函数B中对应的象可以是同一个;

  (3)不要求函数B中的每一个元素在函数A中都有原象。

  6.高中数学函数之分段函数

  (1)在定义域的不同部分上有不同的解析表达式的函数。

  (2)各部分的自变量的取值情况.

  (3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.

  补充:复合函数

  如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数。

  高一数学知识点总结(二)

  幂函数

  定义

  形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

  定义域和值域

  当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域

  性质

  对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

  首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

  排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;

  排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数;

  排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

  指数函数

  指数函数

  (1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

  (2)指数函数的值域为大于0的实数集合。

  (3)函数图形都是下凹的。

  (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

  (5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

  (6)函数总是在某一个方向上无限趋向于X轴,永不相交。

  (7)函数总是通过(0,1)这点。

  (8)显然指数函数无界。

  高一数学知识点总结(三)

  1.高中数学函数函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于函数A中的任意一个数x,在函数B中都有确定的数f(x)和它对应,那么就称f:A→B为从函数A到函数B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的函数{f(x)|x∈A}叫做函数的值域.

  注意:

  函数定义域:能使函数式有意义的实数x的函数称为函数的定义域。

  求函数的定义域时列不等式组的主要依据是:

  (1)分式的分母不等于零;

  (2)偶次方根的被开方数不小于零;

  (3)对数式的真数必须大于零;

  (4)指数、对数式的底必须大于零且不等于1.

  (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的函数.

  (6)指数为零底不可以等于零,

  (7)实际问题中的函数的定义域还要保证实际问题有意义.

  ?相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)

  2.高中数学函数值域:先考虑其定义域

  (1)观察法

  (2)配方法

  (3)代换法

  3.函数图象知识归纳

  (1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的函数C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.

  (2)画法

  A、描点法:

  B、图象变换法

  常用变换方法有三种

  (1)平移变换

  (2)伸缩变换

  (3)对称变换

  4.高中数学函数区间的概念

  (1)函数区间的分类:开区间、闭区间、半开半闭区间

  (2)无穷区间

  5.映射

  一般地,设A、B是两个非空的函数,如果按某一个确定的对应法则f,使对于函数A中的任意一个元素x,在函数B中都有确定的元素y与之对应,那么就称对应f:AB为从函数A到函数B的一个映射。记作“f(对应关系):A(原象)B(象)”

  对于映射f:A→B来说,则应满足:

  (1)函数A中的每一个元素,在函数B中都有象,并且象是的;

  (2)函数A中不同的元素,在函数B中对应的象可以是同一个;

  (3)不要求函数B中的每一个元素在函数A中都有原象。

  6.高中数学函数之分段函数

  (1)在定义域的不同部分上有不同的解析表达式的函数。

  (2)各部分的自变量的取值情况.

  (3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.

  补充:复合函数

  如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数。

  高一数学知识点总结(四)

  圆的方程定义:

  圆的标准方程(x-a)2+(y-b)2=r2中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件。

  直线和圆的位置关系:

  1.直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系.

  ①Δ>0,直线和圆相交.②Δ=0,直线和圆相切.③Δ<0,直线和圆相离.

  方法二是几何的观点,即把圆心到直线的距离d和半径R的大小加以比较.

  ①dR,直线和圆相离.

  2.直线和圆相切,这类问题主要是求圆的切线方程.求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况.

  3.直线和圆相交,这类问题主要是求弦长以及弦的中点问题.

  切线的性质

  ⑴圆心到切线的距离等于圆的半径;

  ⑵过切点的半径垂直于切线;

  ⑶经过圆心,与切线垂直的直线必经过切点;

  ⑷经过切点,与切线垂直的直线必经过圆心;

  当一条直线满足

  (1)过圆心;

  (2)过切点;

  (3)垂直于切线三个性质中的两个时,第三个性质也满足.

  切线的判定定理

  经过半径的外端点并且垂直于这条半径的直线是圆的切线.

  切线长定理

  从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角.

  高一数学知识点总结(五)

  重点难点讲解:

  1.回归分析:

  就是对具有相关关系的两个变量之间的关系形式进行测定,确定一个相关的数学表达式,以便进行估计预测的统计分析方法。根据回归分析方法得出的数学表达式称为回归方程,它可能是直线,也可能是曲线。

  2.线性回归方程

  设x与y是具有相关关系的两个变量,且相应于n组观测值的n个点(xi,yi)(i=1,......,n)大致分布在一条直线的附近,则回归直线的方程为。

  其中。

  3.线性相关性检验

  线性相关性检验是一种假设检验,它给出了一个具体检验y与x之间线性相关与否的办法。

  ①在课本附表3中查出与显著性水平0.05与自由度n-2(n为观测值组数)相应的相关系数临界值r0.05。

  ②由公式,计算r的值。

  ③检验所得结果

  如果|r|≤r0.05,可以认为y与x之间的线性相关关系不显著,接受统计假设。

  如果|r|>r0.05,可以认为y与x之间不具有线性相关关系的假设是不成立的,即y与x之间具有线性相关关系。

  典型例题讲解:

  例1.从某班50名学生中随机抽取10名,测得其数学考试成绩与物理考试成绩资料如表:序号12345678910数学成绩54666876788285879094,物理成绩61806286847685828896试建立该10名学生的物理成绩对数学成绩的线性回归模型。

  解:设数学成绩为x,物理成绩为,则可设所求线性回归模型为,

  计算,代入公式得∴所求线性回归模型为=0.74x+22.28。

  说明:将自变量x的值分别代入上述回归模型中,即可得到相应的因变量的估计值,由回归模型知:数学成绩每增加1分,物理成绩平均增加0.74分。大家可以在老师的帮助下对自己班的数学、化学成绩进行分析。

  例2.假设关于某设备的使用年限x和所支出的维修费用y(万元),有如下的统计资料:x23456y2.23.85.56.57.0

  若由资料可知y对x成线性相关关系。试求:

  (1)线性回归方程;(2)估计使用年限为10年时,维修费用是多少?

  分析:本题为了降低难度,告诉了y与x间成线性相关关系,目的是训练公式的使用。

  解:(1)列表如下:i12345xi23456yi2.23.85.56.57.0xiyi4.411.422.032.542.049162536于是b=,。∴线性回归方程为:=bx+a=1.23x+0.08。

  (2)当x=10时,=1.23×10+0.08=12.38(万元)即估计使用10年时维修费用是12.38万元。

  说明:本题若没有告诉我们y与x间是线性相关的,应首先进行相关性检验。如果本身两个变量不具备线性相关关系,或者说它们之间相关关系不显著时,即使求出回归方程也是没有意义的,而且其估计与预测也是不可信的。

  例3.某省七年的国民生产总值及社会商品零售总额如下表所示:已知国民生产总值与社会商品的零售总额之间存在线性关系,请建立回归模型。年份国民生产总值(亿元)

  社会商品零售总额(亿元)1985396.26205.821986442.04227.951987517.77268.661988625.10337.521989700.83366.001990792.54375.111991858.47413.18合计4333.012194.24

  解:设国民生产总值为x,社会商品零售总额为y,设线性回归模型为。

  依上表计算有关数据后代入的表达式得:∴所求线性回归模型为y=0.445957x+37.4148,表明国民生产总值每增加1亿元,社会商品零售总额将平均增加4459.57万元。

  例4.已知某地每单位面积菜地年平均使用氮肥量xkg与每单位面积蔬菜每年平均产量yt之间的关系有如下数据:年份19851986198719881989199019911992x(kg)7074807885929095y(t)5.16.06.87.89.010.210.012.0年份19931994199519961997199871999x(kg)92108115123130138145y(t)11.511.011.812.212.512.813.0(1)求x与y之间的相关系数,并检验是否线性相关;

  (2)若线性相关,求蔬菜产量y与使用氮肥量之间的回归直线方程,并估计每单位面积施肥150kg时,每单位面积蔬菜的年平均产量。

  分析:(1)使用样本相关系数计算公式来完成;(2)查表得出显著水平0.05与自由度15-2相应的相关系数临界值r0.05比较,若r>r0.05,则线性相关,否则不线性相关。

  解:(1)列出下表,并用科学计算器进行有关计算:i123456789101112131415xi707480788592909592108115123130138145yi5.16.06.87.89.010.210.012.011.511.011.812.212.512.813.0xiyi357444544608.4765938.490011401058118813571500.616251766.41885,.故蔬菜产量与施用氮肥量的相关系数:r=由于n=15,故自由度15-2=13。由相关系数检验的临界值表查出与显著水平0.05及自由度13相关系数临界值r0.05=0.514,则r>r0.05,从而说明蔬菜产量与氮肥量之间存在着线性相关关系。

  (2)设所求的回归直线方程为=bx+a,则∴回归直线方程为=0.0931x+0.7102。

  当x=150时,y的估值=0.0931×150+0.7102=14.675(t)。

  说明:求解两个变量的相关系数及它们的回归直线方程的计算量较大,需要细心谨慎计算,如果会使用含统计的科学计算器,能简单得到,这些量,也就无需有制表这一步,直接算出结果就行了。另外,利用计算机中有关应用程序也可以对这些数据进行处理。

高一数学知识点总结期末必备

【审核人:站长】

收藏   加好友   生成海报   分享
点赞(0)
打赏
Tags:
评论(0人参与,0条评论) 心怡
0/0
  • 请先说点什么
    最新评论

    发布者资料

    热门文章

    高中学习

    查看更多高中学习
    首页
    栏目
    搜索
    会员
    投稿