高中学习

高二数学对数函数知识点

作者:锦祥2   发表于:
浏览:13次    字数:2143  原创
级别: 文学秀才   总稿:59891篇,  月稿:0

因为高二开始努力,所以前面的知识肯定有一定的欠缺,这就要求自己要制定一定的计划,更要比别人付出更多的努力,相信付出的汗水不会白白流淌的,收获总是自己的。x小编网高二频道为你整理了《高二数学重要知识点归纳》,助你金榜题名!

高二数学对数函数知识点

1.求函数的单调性:

利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数。

利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间。

反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,

(1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);

(2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x值不构成区间);

(3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立。

2.求函数的极值:

设函数yf(x)在x0及其附近有定义,如果对x0附近的所有的点都有f(x)f(x0)(或f(x)f(x0)),则称f(x0)是函数f(x)的极小值(或极大值)。

可导函数的极值,可通过研究函数的单调性求得,基本步骤是:

(1)确定函数f(x)的定义域;(2)求导数f(x);(3)求方程f(x)0的全部实根,x1x2xn,顺次将定义域分成若干个小区间,并列表:x变化时,f(x)和f(x)值的变化情况:

(4)检查f(x)的符号并由表格判断极值。

3.求函数的值与最小值:

如果函数f(x)在定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数在定义域上的值。函数在定义域内的极值不一定,但在定义域内的最值是的。

求函数f(x)在区间[a,b]上的值和最小值的步骤:(1)求f(x)在区间(a,b)上的极值;

(2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的值与最小值。

4.解决不等式的有关问题:

(1)不等式恒成立问题(绝对不等式问题)可考虑值域。

f(x)(xA)的值域是[a,b]时,

不等式f(x)0恒成立的充要条件是f(x)max0,即b0;

不等式f(x)0恒成立的充要条件是f(x)min0,即a0。

f(x)(xA)的值域是(a,b)时,

不等式f(x)0恒成立的充要条件是b0;不等式f(x)0恒成立的充要条件是a0。

(2)证明不等式f(x)0可转化为证明f(x)max0,或利用函数f(x)的单调性,转化为证明f(x)f(x0)0。

5.导数在实际生活中的应用:

实际生活求解(小)值问题,通常都可转化为函数的最值.在利用导数来求函数最值时,一定要注意,极值点的单峰函数,极值点就是最值点,在解题时要加以说明。

高二数学对数函数知识点

复合函数定义域

若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f[g(x)]的定义域是D={x|x∈A,且g(x)∈B}综合考虑各部分的x的取值范围,取他们的交集。

求函数的定义域主要应考虑以下几点:

⑴当为整式或奇次根式时,R的值域;

⑵当为偶次根式时,被开方数不小于0(即≥0);

⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;

⑷当为指数式时,对零指数幂或负整数指数幂,底不为0。

⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。

⑹分段函数的定义域是各段上自变量的取值集合的并集。

⑺由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求

⑻对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。

⑼对数函数的真数必须大于零,底数大于零且不等于1。

⑽三角函数中的切割函数要注意对角变量的限制。

复合函数常见题型

(ⅰ)已知f(x)定义域为A,求f[g(x)]的定义域:实质是已知g(x)的范围为A,以此求出x的范围。

(ⅱ)已知f[g(x)]定义域为B,求f(x)的定义域:实质是已知x的范围为B,以此求出g(x)的范围。

(ⅲ)已知f[g(x)]定义域为C,求f[h(x)]的定义域:实质是已知x的范围为C,以此先求出g(x)的范围(即f(x)的定义域);然后将其作为h(x)的范围,以此再求出x的范围。

高二数学对数函数知识点

直线、平面、简单几何体:

1、学会三视图的分析:

2、斜二测画法应注意的地方:

(1)在已知图形中取互相垂直的轴Ox、Oy。画直观图时,把它画成对应轴o'x'、o'y'、使∠x'o'y'=45°(或135°);

(2)平行于x轴的线段长不变,平行于y轴的线段长减半.

(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度.

3、表(侧)面积与体积公式:

⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧=;③体积:V=S底h

⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧=;③体积:V=S底h:

⑶台体①表面积:S=S侧+S上底S下底②侧面积:S侧=

⑷球体:①表面积:S=;②体积:V=

4、位置关系的证明(主要方法):注意立体几何证明的书写

(1)直线与平面平行:①线线平行线面平行;②面面平行线面平行。

(2)平面与平面平行:①线面平行面面平行。

(3)垂直问题:线线垂直线面垂直面面垂直。核心是线面垂直:垂直平面内的两条相交直线

5、求角:(步骤-------Ⅰ.找或作角;Ⅱ.求角)

⑴异面直线所成角的求法:平移法:平移直线,构造三角形;

⑵直线与平面所成的角:直线与射影所成的角

高二数学对数函数知识点

【审核人:站长】

收藏   加好友   生成海报   分享
点赞(0)
打赏
Tags:
评论(0人参与,0条评论) 心怡
0/0
  • 请先说点什么
    最新评论

    发布者资料

    热门文章

    高中学习

    查看更多高中学习
    首页
    栏目
    搜索
    会员
    投稿