通用学习

考研数学知识点总结

作者:维维   发表于:
浏览:13次    字数:6184  原创
级别: 文学秀才   总稿:59891篇,  月稿:0

考研数学知识点总结归纳

在考研的所有科目中,数学可以算得上是拉分差距最明显的科目了。每年成绩出来,数学接近满分的同学很多,未满及格线的同学也是一抓一大把。那么接下来给大家分享一些关于,希望对大家有所帮助。

考研数学知识点

第一章 行列式

1、行列式的定义

2、行列式的性质

3、特殊行列式的值

4、行列式展开定理

5、抽象行列式的计算

第二章 矩阵

1、矩阵的定义及线性运算

2、乘法

3、矩阵方幂

4、转置

5、逆矩阵的概念和性质

6、伴随矩阵

7、分块矩阵及其运算

8、矩阵的初等变换与初等矩阵

9、矩阵的等价

10、矩阵的秩

第三章 向量

1、向量的概念及其运算

2、向量的线性组合与线性表出

3、等价向量组

4、向量组的线性相关与线性无关

5、极大线性无关组与向量组的秩

6、内积与施密特正交化

7、n维向量空间(数学一)

第四章 线性方程组

1、线性方程组的克莱姆法则

2、齐次线性方程组有非零解的判定条件

3、非齐次线性方程组有解的判定条件

4、线性方程组解的结构

第五章 矩阵的特征值和特征向量

1、矩阵的特征值和特征向量的概念和性质

2、相似矩阵的概念及性质

3、矩阵的相似对角化

4、实对称矩阵的特征值、特征向量及其相似对角矩阵

第六章 二次型

1、二次型及其矩阵表示

2、合同变换与合同矩阵

3、二次型的秩

4、二次型的标准型和规范型

5、惯性定理

6、用正交变换和配方法化二次型为标准型

7、正定二次型及其判定

考研数学必备知识点总结

高等数学部分

第一章 函数、极限与连续

1、函数的有界性

2、极限的定义(数列、函数)

3、极限的性质(有界性、保号性)

4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)

5、函数的连续性

6、间断点的类型

7、渐近线的计算

第二章 导数与微分

1、导数与微分的定义(函数可导性、用定义求导数)

2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)

3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二))

第三章 中值定理

1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)

2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)

3、积分中值定理

4、泰勒中值定理

5、费马引理

第四章 一元函数积分学

1、原函数与不定积分的定义

2、不定积分的计算(变量代换、分部积分)

3、定积分的定义(几何意义、微元法思想(数一、二))

4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)

5、定积分的计算

6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)

7、变限积分(求导)

8、广义积分(收敛性的判断、计算)

第五章 空间解析几何(数一)

1、向量的运算(加减、数乘、数量积、向量积)

2、直线与平面的方程及其关系

3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法

第六章 多元函数微分学

1、二重极限和二元函数连续、偏导数、可微及全微分的定义

2、二元函数偏导数存在、可微、偏导函数连续之间的关系

3、多元函数偏导数的计算(重点)

4、方向导数与梯度

5、多元函数的极值(无条件极值和条件极值)

6、空间曲线的切线与法平面、曲面的切平面与法线

第七章 多元函数积分学(除二重积分外,数一)

1、二重积分的`计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)

2、三重积分的计算(“先一后二”、“先二后一”、球坐标)

3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)

4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)

5、高斯公式(重点)(不满足条件时的处理(类似格林公式))

6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)

7、场论初步(散度、旋度)

第八章 微分方程

1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解

2、线性微分方程解的性质(叠加原理、解的结构)

3、应用(由几何及物理背景列方程)

第九章 级数(数一、数三)

1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)

2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)

3、交错级数的莱布尼兹判别法

4、绝对收敛与条件收敛

5、幂级数的收敛半径与收敛域

6、幂级数的求和与展开

7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)

线性代数部分

第一章 行列式

1、行列式的定义

2、行列式的性质

3、特殊行列式的值

4、行列式展开定理

5、抽象行列式的计算

第二章 矩阵

1、矩阵的定义及线性运算

2、乘法

3、矩阵方幂

4、转置

5、逆矩阵的概念和性质

6、伴随矩阵

7、分块矩阵及其运算

8、矩阵的初等变换与初等矩阵

9、矩阵的等价

10、矩阵的秩

第三章 向量

1、向量的概念及其运算

2、向量的线性组合与线性表出

3、等价向量组

4、向量组的线性相关与线性无关

5、极大线性无关组与向量组的秩

6、内积与施密特正交化

7、n维向量空间(数学一)

第四章 线性方程组

1、线性方程组的克莱姆法则

2、齐次线性方程组有非零解的判定条件

3、非齐次线性方程组有解的判定条件

4、线性方程组解的结构

第五章 矩阵的特征值和特征向量

1、矩阵的特征值和特征向量的概念和性质

2、相似矩阵的概念及性质

3、矩阵的相似对角化

4、实对称矩阵的特征值、特征向量及其相似对角矩阵

第六章 二次型

1、二次型及其矩阵表示

2、合同变换与合同矩阵

3、二次型的秩

4、二次型的标准型和规范型

5、惯性定理

6、用正交变换和配方法化二次型为标准型

7、正定二次型及其判定

概率论与数理统计部分

第一章 随机事件和概率

1、随机事件的关系与运算

2、随机事件的运算律

3、特殊随机事件(必然事件、不可能事件、互不相容事件和对立事件)

4、概率的基本性质

5、随机事件的条件概率与独立性

6、五大概率计算公式(加法、减法、乘法、全概率公式和贝叶斯公式)

7、全概率公式的思想

8、概型的计算(古典概型和几何概型)

第二章 随机变量及其分布

1、分布函数的定义

2、分布函数的充要条件

3、分布函数的性质

4、离散型随机变量的分布律及分布函数

5、概率密度的充要条件

6、连续型随机变量的性质

7、常见分布(0-1分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、指数分布、正态分布)

8、随机变量函数的分布(离散型、连续型)

第三章 多维随机变量及其分布

1、二维离散型随机变量的三大分布(联合、边缘、条件)

2、二维连续型随机变量的三大分布(联合、边缘和条件)

3、随机变量的独立性(判断和性质)

4、二维常见分布的性质(二维均匀分布、二维正态分布)

5、随机变量函数的分布(离散型、连续型)

第四章 随机变量的数字特征

1、期望公式(一个随机变量的期望及随机变量函数的期望)

2、方差、协方差、相关系数的计算公式

3、运算性质(期望、方差、协方差、相关系数)

4、常见分布的期望和方差公式

第五章 大数定律和中心极限定理

1、切比雪夫不等式

2、大数定律(切比雪夫大数定律、辛钦大数定律、伯努利大数定律)

3、中心极限定理(列维—林德伯格定理、棣莫弗—拉普拉斯定理)

第六章 数理统计的基本概念

1、常见统计量(定义、数字特征公式)

2、统计分布

3、一维正态总体下的统计量具有的性质

4、估计量的评选标准(数学一)

5、上侧分位数(数学一)

第七章 参数估计

1、矩估计法

2、最大似然估计法

3、区间估计(数学一)

第八章 假设检验(数学一)

1、显著性检验

2、假设检验的两类错误

3、单个及两个正态总体的均值和方差的假设检验

考研数学复习之拿高分方法

一、理性分析三个组成部分,各个击破

我们知道数学整个试卷的组成部分是:高数82分+线代34分+概率论34分;很明显微积分占了绝大部分;另外概率论里面很多题目要用到微积分的工具,实际上微积分的分数比82分要高,应该是能到100分左右。所以同学们在前期复习的时候一定要把微积分的基础打扎实;线性代数再难,毕竟内容不多。而且矩阵、向量、线性方程组、特征根与特征值、二次型本质思想都是一致的。用来用去的基本工具就是对矩阵做初等变换,求线性方程组解的结构,线代难是难在每个部分的基本思想都是一样的,但却是不同的概念。就导致章节之间的联系特别紧密,逻辑关系严密:比如线性相关无关的问题跟齐次方程组有没有非零解本质上是一模一样的;向量线性相关和无关的一些证明都可以用线性方程组的解去简单完成;也就是因为知识点这种内在的极大相关性提高了线性代数的考试难度。但由于线性代数知识点本身不多,只要把每一部分都熟练到一定程度,深刻理解掌握,自然而然也就能掌握其中的联系和逻辑了。

第三部分的概率论很多基本概念我们在高中的时候其实已经接触到了,一些简单的事件概率的运算、基本概型我们也都早就学过。总体来说概率论是三个部分中最简单的。不但内容少,而且每年考的题型也都特别固定。这部分内容我真的认为完全可以用突击来完成的。综上所述:微积分是整个考研的难点、重点。必须脚踏实地把基础打扎实;线性代数是难点,这个用熟练程度和思考可以破;概率论,只要你前面的知识学的够扎实,就完全没问题。另外在复习过程中,不少同学问我,要不要同时看微积分、线性代数、概率论;这里我的建议是:合力于一点,各个击破!谦虚谨慎,不骄不躁。

二、聚焦精力、选好教辅

每年都有一个现象,就是在选教辅书上,经验贴里提到的,师兄师姐提到的,一切渠道提到的所谓比较好的资料,巴不得全买了,但是买回来后又有多少人能全部做完呢。这里我不得不提醒下:须知考研数学考的是深度,而不是广度;我一直认为有三套书就足够了:

(一)教材,高数同济版的;线代统计五版;概率论浙大四版;

但这里不得不提醒大家,这四本书如果全部看下来掌握透彻,是需要很大时间和精力的;里面很多东西是所不考的,即使大纲里有。其实在复习的时候,很多同学把过多的精力,放在了那些不考,而且比较偏的题目上。就会导致大量的精力浪费。为此,我在教授数学中,就会提前给一份预习大纲,哪些考哪些不考;课后习题哪些做,哪些不做。从而能让大家精力聚焦。

(二)真题

不管怎么说,每一本习题里都参照了不少真题原型,甚至直接就是真题。真题的价值不必多说。但是每个同学对待的也很简单,只要做对了,就pass掉了。不回头去想你的做法或者你的思维是否符合命题人的要求。关于真题,对于比较好的典型题做5遍左右是比较合适的。对一些很常规的题,可以2-3遍就可以了。总之一定要深刻研究真题,让真题的价值发挥到最大。我忠告:市面上教辅书很多。我认为只要你选择大家公认的,把其价值发挥到大,认真去研究就足够了。不要人云亦云,购买过多的教辅书,导致自己精力分散,反而没有达到考研要求的深度和难度。

三、掌握正确的复习方法:杀人诛心

在复习数学时,确实每个人都有自己的想法,但是切记你怎么想不重要,关键是命题人怎么想。尤其是在做题的时候,千万不要简单地以能不能做出来为标准。一定要去分析背后所用的知识点以及考试逻辑。最后一定要问自己,这种方法是不是命题人想我用的方法。有哪些不足,有哪些忽略的细节,一定要好好审视。另外数学考试特点:学会思考而不是学会做题,但是在我们对一道题足够熟悉前,是很难产生想法的;所以在整个复习过程中,我一直要求学生:先熟悉,然后一定要经过自己的思考才能真正把这道题变成自己的,才能做到举一反三,以不变应万变。另外同学在做题的时候容易出现两个误区:

1、上来就动手,做过真题的同学就会发现,很多题目的设置是很有技巧的;这个技巧不是那种投机取巧,是需要你对知识点足够熟悉,需要你思考下才能想出来的。我记得这几年考试,很多10、11分的答题,我整个做出来都不到一分钟。当然很多同学可能不相信,在课堂上我也都亲自展现给同学们。不是说我厉害,而是当你熟练到一定程度的时候,就会跟命题人心有灵犀一点通了。所以做题的时候一定要:一看二想三动手。

2、刻意去记一些巧方法,考研数学中,我一直认为最好的方法绝对不是投机取巧,而是自然而然的方法,比如费马引理可能不会直接考到,但是它的证明你运用的思想和思维都是考研中必须要用到的。所以必须认真掌握其证明。

考研数学复习指南

1.思考着去做题,去总结

很多学生都有这样的困惑,做了很多题但不会的题还是很多,最可气的就是很多题明明做过,但是再遇到还是不会做!这就是很多同学存在的通病,不求甚解。总以为不会做了,看看答案就会了,并不会认真的思考为什么不会,解题技巧是什么,和它同类型的题我能不能会做等等。其实,这些都是很重要的,提醒大家要学着思考,学着“记忆”,最重要是要会举一反三,这样,我们才能脱离题海的浮沉,能够做到有效做题,高效提升!

2.侧重基础,培养逆向思维

很多时候,备考者会陷入盲目的题海中,这也是很多考生对数学感到头痛的原因所在。其实在前期复习知识点的时候,就应该把定义、定理的推导作为一个重点内容,重视推导和例题中的方法与技巧,认真分析这些方法,将它们套用到相应的练习题中,比做大量的重复练习要高效得多。

同时,思维习惯大大影响着学习效果。当进入考研数学复习备考的时候,大多数人继承了以往学习的习惯,思维也基本上定型了,也就是进入了定势思维。习惯性思考方式在一方面有优势,另一方面也制约着学习成绩的提高,我们现在要做的就是打破惯性思维!

3.做题有始有终,提高计算能力

数学不等于做题,但是不可避免的是学好数学一定要做题,那么如何做题?我们说基础的扎实巩固是根本,再这个基础上进行做题。同时,提醒大家的是复习一定要养成一个好的习惯,拿到的数学题一定要有始有终把它算出来,这是一种计算能力的训练,尤其是计算量大的时候,如果没有平常这样一个训练,在实际考试的时候在短时间内是很难心有余力也足的。

4.深入思考,善于总结

考试里不仅仅是考察我们基本概念、基本理论、基本方法的问题,还涉及到我们灵活运用知识的能力问题,所以仅仅是依靠教材很难把它这种考试命题的特点归纳总结出来,因此要了解考试,历年考试的真题作为准备去参加研究生考试的同学是必备的。

大家选真题的时候应该考虑到能不能通过真题的分析帮助我们真正的归纳总结这样一些题型出来,针对每一个问题我们应该如何去分析和讨论在分析讨论过程中间,有没有一些可能的变化情况,这些变化情况到现在为止,考到了哪一些,那一些就是我们下一步复习应该注意的,这样每一部分你都能够这样去归纳、总结或通过这种相关的辅导书帮助你归纳总结出来了,复习就更有针对性。

5.揣摩真题,把握方向

真题的作用是不容忽视的,经过十几年的考试,相当多的题目模式已经定了下来,很多考研题目都是类似的。考研真题经过千锤百炼,在思想性上有较高的参考价值,需要多加揣摩。尤其是近两年的考题,反映了命题者出题的方式和思路,更要注意。所以,同学们一定要把真题重视起来!

【审核人:站长】

收藏   加好友   生成海报   分享
点赞(0)
打赏
Tags:
评论(0人参与,0条评论) 心怡
0/0
  • 请先说点什么
    最新评论

    发布者资料

    热门文章

    通用学习

    查看更多通用学习
    首页
    栏目
    搜索
    会员
    投稿