高中学习

高三数学考试必考的重要知识点归纳

作者:赞锐   发表于:
浏览:22次    字数:4694  原创
级别: 文学秀才   总稿:59891篇,  月稿:0

  华罗庚说过:“为中华掘起而读书。”这就是奋斗。他之所以成为伟大的数学家,完全是他奋斗的成果。他怀着‘为中华的决心确立了远大的目标,在读书的人生中开创一片数学天地。以下是小编给大家整理的高三数学考试必考的重要知识点归纳,希望能帮助到你!

  

高三数学考试必考的重要知识点

  正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

  余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

  圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

  圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

  抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

  直棱柱侧面积 S=c_h 斜棱柱侧面积 S=c'_h

  正棱锥侧面积 S=1/2c_h' 正棱台侧面积 S=1/2(c+c')h'

  圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi_r2

  圆柱侧面积 S=c_h=2pi_h 圆锥侧面积 S=1/2_c_l=pi_r_l

  弧长公式 l=a_r a是圆心角的弧度数r >0 扇形面积公式 s=1/2_l_r

  锥体体积公式 V=1/3_S_H 圆锥体体积公式 V=1/3_pi_r2h

  斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长

  柱体体积公式 V=s_h 圆柱体 V=pi_r2h

  两角和公式

  sin(A+B)=sinAcosB+cosAsinB

  sin(A-B)=sinAcosB-sinBcosA

  cos(A+B)=cosAcosB-sinAsinB

  cos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB)

  tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)

  ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

  倍角公式

  tan2A=2tanA/(1-tan2A)

  ctg2A=(ctg2A-1)/2ctga

  sin(2α)=2sinα·cosα

  cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

  tan(2α)=2tanα/[1-tan^2(α)]

高三数学考试必考知识点

  考试内容:

  角的概念的推广.弧度制.

  任意角的三角函数.单位圆中的三角函数线.同角三角函数的基本关系式.正弦、余弦的诱导公式.

  两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.

  正弦函数、余弦函数的图像和性质.周期函数.函数y=Asin(ωx+φ)的图像.正切函数的图像和性质.已知三角函数值求角.

  正弦定理.余弦定理.斜三角形解法.

  考试要求:

  (1)理解任意角的概念、弧度的意义能正确地进行弧度与角度的换算.

  (2)掌握任意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;掌握同角三角函数的基本关系式;掌握正弦、余弦的诱导公式;了解周期函数与最小正周期的意义.

  (3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式.

  (4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明.

  (5)理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A.ω、φ的物理意义.

  (6)会由已知三角函数值求角,并会用符号arcsinxarc-cosxarctanx表示.

  (7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形.

  (8)“同角三角函数基本关系式:sin2α+cos2α=1,sinα/cosα=tanα,tanα?cosα=1”.

高三数学考试重要知识点

  1.复数及其相关概念:

  (1)虚数单位i,它的平方等于-1,即i2=-1.

  (2)复数的代数形式:z=a+bi,(其中a, b∈R)

  ①实数——当b = 0时的复数a + bi,即a;

  ②虚数——当b≠0时的复数a + bi;

  ③纯虚数—当a = 0且b≠0时的复数a + bi,即bi.

  ④复数a + bi的实部与虚部—a叫做复数的实部,b叫做虚部(注意a,b都是实数)

  ⑤复数集C—全体复数的集合,一般用字母C表示.

  ⑥特别注意:a=0仅是复数a+bi为纯虚数的必要条件,若a=b=0,则a+bi=0是实数。

  2.复数的四则运算

  若两个复数z1=a1+b1i,z2=a2+b2i,

  (1)加法:z1+z2=(a1+a2)+(b1+b2)i;

  (2)减法:z1-z2=(a1-a2)+(b1-b2)i;

  (3)乘法:z1·z2=(a1?a2-b1?b2)+(a1?b2+a2?b1)i;

  (4)除法

  (5)四则运算的交换率、结合率;分配率都适合于复数的情况。

  注意:复数的加法、减法、乘法运算与实数的运算基本上没有区别,最主要的是在运算中将i2=-1结合到实际运算过程中去。

  如(a+bi)(a-bi)= a2+b2

  5.共轭复数:两个实部相等,虚部互为相反数的复数互为共轭复数

  6.复数的模

  根据两个复数相等的定义,设a, b, c, d∈R,两个复数a+bi和c+di相等规定为a+bi=c+di?a=c且b=d,特别地a+bi=0?a=b=0.

  两个复数不能比较大小,只能由定义判断它们相等或不相等。

高三数学的考试知识点

  一、 对比《考试说明》,把握冷、热点

  1.冷点:课时比例超过分值比例较大的知识点有导数及其应用、计数原理、选修系列4部分,但要注意导数是处理函数问题的一个重要工具,所以在“淡化”冷点时,不要忘记冷点中有热点。

  2.热点:在高考中分值比例超过课时比例较大的知识点有函数及其应用、统计、解三角形、数列、不等式、圆锥曲线、推理与证明等部分。《考试说明》中,除圆锥曲线外,都是《考试说明》中要求较高的部分。

  二、研析《考试说明》,明确核心考查点

  1.集合与常用逻辑用语:强调了集合在表述数学问题时的工具性作用,突出了“韦恩图”在表示集合之间的关系和运算中的作用。虽然不要求判断一个命题是否是复合命题,以及用真值表判断复合命题的真假,但需要特别注意能够对含有一个量词的全称命题进行否定.每年的高考都会有一道选择题,估计今年将会是一道考查常用逻辑用语的选择题。

  2.函数:对分段函数提出了明确的要求,要求能够简单应用;奇偶性只限于会判断具体函数的奇偶性;反函数问题只涉及指数函数和对数函数,既不要求掌握反函数的一般定义,也不要求会求某个具体函数的反函数;注意“三个二次”的问题,更加突出了函数的应用;注意函数零点的概念及其应用;需要注意一些函数与方程的综合问题,以及问题表述方式的变化。

  3.立体几何:必修第一部分中空间几何体更强调几何的直观性,使用了四个“画出”,强调对各种图形的识别、理解和运用,尤其是新课标高考新增加的三视图一定会重点考查,预测其考查方式为:①考查对三视图的理解;②与有关的计算问题联系起来进行考查。第二部分的位置关系侧重于利用空间向量来进行证明和计算,在高考中,会有空间三种角的各种三角函数值的求解问题.

  4.解析几何:初步了解用代数方法处理几何问题的思想,加强对椭圆和抛物线的理解和综合应用,重点掌握椭圆和抛物线与其他知识相结合的解答题.

  5.三角函数:本部分的重点是“基本三角函数关系”、“三角函数的图象和性质”和“正、余弦定理的应用”,有关三角函数的综合解答题每年都有,必须高度重视,不过,这类题都是基础的中档题。

  6.平面向量:掌握向量的四种运算及其几何意义,理解平面向量数量积的物理意义以及会用向量方法解决某些简单的平面几何问题;会用向量方法解决简单的力学问题与其他一些实际问题。这就要求我们应注意平面向量与平面几何、解析几何、三角函数等知识的综合.在高考中对这部分知识的考查方式为:①考查平面向量的性质和运算法则及基本运算技能.要求考生掌握平面向量的和、差、数乘和内积的运算法则,理解其直观的几何意义,并能正确地进行运算。②考查向量的坐标表示,向量的线性运算。 ③和其他数学内容结合在一起,如和函数、曲线、数列等基础知识结合,考查逻辑推理和运算能力等综合运用数学知识解决问题的能力.题目对基础知识和技能的考查一般由浅入深,入手不难,但要圆满完成解答,则需要严密的逻辑推理和准确的计算。

  7.数列:了解数列是自变量为正整数的一类函数和等差数列与一次函数、等比数列与指数函数的关系.能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题。这里“具体的问题情境”,也包括由递推关系式给出的数列,这是近两年重点考查的内容,预计今后还是一个热点和难点。

  8.不等式:要求“对给定的一元二次不等式,会设计求解的程序框图”,会解“绝对值不等式”和“分式不等式”. 会用基本不等式:a+b2≥ab(a,b≥0)解决简单的最大(小)值问题。

  9.导数:理解导数的几何意义,要求我们必须关注曲线的切线问题;对于复合函数的导数,也仅限于会求简单的复合函数[仅限于形如f(ax+b)]的导数;能利用导数研究函数的单调性,会求函数的单调区间;会用导数求函数的.极大值、极小值;会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次),这是导数应用的热点内容。

  10.算法:应该侧重“算法”的三种基本逻辑结构与“程序框图”的复习,理解五种“基本算法语句”即可,特别是“程序框图”与数列、不等式的综合.这类题经常与数列及统计等知识进行小综合。

  11.计数原理:强调对计数原理的“理解”,避免抽象地讨论计数原理,而且强调计数原理在实际中的应用,尤其是要注意与概率的综合.要想成功就必须付出汗水。

  12.概率与统计:高考对概率与统计的考查越来越趋向综合型、交汇型.特别是与函数、不等式、方程、数列、解析几何等的综合,在统计案例中删去了假设检验和聚类分析。

  13.复数:重点是复数的基本概念与代数形式的运算以及复数的几何意义,几乎是每年都会有一道选择题。

  14.选修系列4:对于《坐标系与参数方程》删去“了解其他摆线的生成过程;了解摆线在实际中的应用,了解摆线在表示行星运动轨道中的作用” 。《不等式选讲》由选考变为必考,可见选修系列4将从3选2变为2选1。同时删去 “了解几种柯西不等式的形式及意义” 。更多精彩解读,请参阅《试题调研》之《解读2010广东考试说明》。

  三、读懂《考试说明》,展望命题趋势

  1.立足教材、重视基础、突出知识主干、体现通性通法重点知识构成试卷主体,函数与导数、三角、数列、不等式、向量、立体几何、解析几何、概率与统计这八大主干内容将会重点考查。传统知识中变化较大的是立体几何与解析几何,立体几何的大题,应以平行与垂直的证明和空间中的三种角为主体;解析几何的大题中,直线与圆锥曲线的位置关系和轨迹问题必将淡化,而直线与圆,圆锥曲线的定义、标准方程、几何性质仍是考查的重点。

  2.强调能力立意,坚持在知识网络的交汇点处设计命题数学知识之间存在纵向和横向的有机联系,借助知识点之间的联系,运用知识之间的交叉、渗透和组合,是综合性的最佳表现形式,是考查能力和素质的有效载体。例如,函数与方程、函数与不等式、函数与导数、函数与数列、数列与不等式、函数与平面向量、三角函数与平面解析几何、三角函数与平面向量、三角函数与立体几何、三角函数与数列、平面向量与解析几何、概率与统计等,这些知识网络间的联系的交汇点仍然是2010年高考数学命题的主旋律。

  3.强化数学应用,在数学与现实问题的联系中考查素质与能力加强数学的应用是实施新课标的一个重要理念,巧妙地设计来自社会生活、生产实际或科学实验且符合考生认知特点和所学数学知识的试题,考查考生的数学应用意识和实际应用能力,既是《考试说明》的要求,也是与新课程标准接轨的体现,运用所学的数学知识、数学思想和数学方法来解决实际问题将再度成为2010年高考数学命题的热点。不过,概率与统计的应用题仍是考查的重点。复习中,要注意加强应用题的解题规范化训练,首先要建模,这一环节在解题中要有体现,归结为数学问题后解决此类数学问题,对解得的结果要验证或说明它是否符合问题的实际,最后还必须有答。要防止因解题的不规范而失分。

  4.注重创新,在探究数学问题的过程中考查思维能力创新可以为高考试题注入新的活力。以考生所学的数学知识为基础,对某些数学问题进行深入探讨,或从数学角度对某些实际问题进行探究,设计开放性的试题,鼓励有创造性的答案,以体现研究性学习的要求,这将成为2010年高考数学命题的新亮点。加强数学探究能力和创新能力的培养,是新课标竭力倡导的重要理念,这个理念十分鲜明而强烈地体现在近几年来的高考数学试卷中,每年都有一些背景新颖、内涵深刻的试题出现,例如探索性问题、阅读理解性问题、动手操作类问题和研究性学习型问题等。加强对近几年高考试题的研究,可以使我们从中得到许多有益的启发。

【审核人:站长】

收藏   加好友   生成海报   分享
点赞(0)
打赏
Tags:
评论(0人参与,0条评论) 心怡
0/0
  • 请先说点什么
    最新评论

    发布者资料

    热门文章

    高中学习

    查看更多高中学习
    首页
    栏目
    搜索
    会员
    投稿