高中学习

高二数学下学期重要知识点

作者:舒淇   发表于:
浏览:8次    字数:3231  原创
级别: 文学秀才   总稿:59891篇,  月稿:0

  高中的数学内容,不管是在逻辑思维能力,还是在空间想象能力等方面,都较初中有着明显的区别和更高的要求,较多的学生一进入高中就感觉学数学不容易。下面小编为大家带来高二数学下学期重要知识点,希望对您有所帮助!

  

  高二数学下学期重要知识点

  一、直线与圆:

  1、直线的倾斜角的范围是在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。当直线与轴重合或平行时,规定倾斜角为0;

  2、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα.过两点(x1,y1),(x2,y2)的直线的斜率k=(y2-y1)/(x2-x1),另外切线的斜率用求导的方法。

  3、直线方程:

  (1)点斜式:直线过点斜率为,则直线方程为

  (2)斜截式:直线在轴上的截距为和斜率,则直线方程为

  4、直线与直线的位置关系:

  (1)平行A1/A2=B1/B2注意检验

  (2)垂直A1A2+B1B2=0

  5、点到直线的距离公式;

  两条平行线与的距离是

  6、圆的标准方程:圆的一般方程:注意能将标准方程化为一般方程

  7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.

  8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.①相离②相切③相交

  9、解决直线与圆的`关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形)直线与圆相交所得弦长

  二、圆锥曲线方程:

  1、椭圆:①方程(a>b>0)注意还有一个;②定义:|PF1|+|PF2|=2a>2c;③e=④长轴长为2a,短轴长为2b,焦距为2c;a2=b2+c2;

  2、双曲线:①方程(a,b>0)注意还有一个;②定义:||PF1|-|PF2||=2a<2c;③e=;④实轴长为2a,虚轴长为2b,焦距为2c;渐进线或c2=a2+b2

  3、抛物线:①方程y2=2px注意还有三个,能区别开口方向;②定义:|PF|=d焦点F(,0),准线x=-;③焦半径;焦点弦=x1+x2+p;

  4、直线被圆锥曲线截得的弦长公式:

  三、直线、平面、简单几何体:

  1、学会三视图的分析:

  2、斜二测画法应注意的地方:

  (1)在已知图形中取互相垂直的轴Ox、Oy。画直观图时,把它画成对应轴o'x'、o'y'、使∠x'o'y'=45°(或135°);

  (2)平行于x轴的线段长不变,平行于y轴的线段长减半.

  (3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度.

  3、表(侧)面积与体积公式:

  (1)柱体:①表面积:S=S侧+2S底;②侧面积:S侧=;③体积:V=S底h

  (2)锥体:①表面积:S=S侧+S底;②侧面积:S侧=;③体积:V=S底h:

  (3)台体①表面积:S=S侧+S上底S下底②侧面积:S侧=

  (4)球体:①表面积:S=;②体积:V=

  4、位置关系的证明(主要方法):注意立体几何证明的书写

  (1)直线与平面平行:①线线平行线面平行;②面面平行线面平行。

  (2)平面与平面平行:①线面平行面面平行。

  (3)垂直问题:线线垂直线面垂直面面垂直。核心是线面垂直:垂直平面内的两条相交直线

  5、求角:(步骤-------Ⅰ.找或作角;Ⅱ.求角)

  (1)异面直线所成角的求法:平移法:平移直线,构造三角形;

  (2)直线与平面所成的角:直线与射影所成的角

  四、导数:导数的意义-导数公式-导数应用(极值最值问题、曲线切线问题)

  1、导数的定义:在点处的导数记作.

  2、导数的几何物理意义:曲线在点处切线的斜率

  ①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。

  3.常见函数的导数公式:①;②;③;

  ⑤;⑥;⑦;⑧。

  4.、导数的四则运算法则:

  5、导数的应用:

  (1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;

  注意:如果已知为减函数求字母取值范围,那么不等式恒成立。

  (2)求极值的步骤:

  ①求导数;

  ②求方程的根;

  ③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;

  (3)求可导函数值与最小值的步骤:

  ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。

  五、常用逻辑用语:

  1、四种命题:

  ⑴原命题:若p则q;⑵逆命题:若q则p;⑶否命题:若p则q;⑷逆否命题:若q则p

  注:1、原命题与逆否命题等价;逆命题与否命题等价。判断命题真假时注意转化。

  2、注意命题的否定与否命题的区别:命题否定形式是;否命题是.命题“或”的否定是“且”;“且”的否定是“或”.

  3、逻辑联结词:

  (1)且(and):命题形式pq;pqpqpqp

  (2)或(or):命题形式pq;真真真真假

  (3)非(not):命题形式p.真假假真假

  假真假真真

  假假假假真

  “或命题”的真假特点是“一真即真,要假全假”;

  “且命题”的真假特点是“一假即假,要真全真”;

  “非命题”的真假特点是“一真一假”

  4、充要条件

  由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。

  5、全称命题与特称命题:

  短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号表示。含有全体量词的命题,叫做全称命题。

  短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号表示,含有存在量词的命题,叫做存在性命题。

  高二数学下学期必考知识点

  (一)解三角形:

  1、正弦定理:在中,、、分别为角、、的对边,,则有

  (为的外接圆的半径)

  2、正弦定理的变形公式:①,,;

  ②,,;③;

  3、三角形面积公式:.

  4、余弦定理:在中,有,推论:

  (二)数列:

  1.数列的有关概念:

  (1)数列:按照一定次序排列的一列数。数列是有序的。数列是定义在自然数N_它的有限子集{1,2,3,…,n}上的函数。

  (2)通项公式:数列的第n项an与n之间的函数关系用一个公式来表示,这个公式即是该数列的通项公式。如:。

  (3)递推公式:已知数列{an}的第1项(或前几项),且任一项an与他的前一项an-1(或前几项)可以用一个公式来表示,这个公式即是该数列的递推公式。

  如:。

  2.数列的表示方法:

  (1)列举法:如1,3,5,7,9,…(2)图象法:用(n,an)孤立点表示。

  (3)解析法:用通项公式表示。(4)递推法:用递推公式表示。

  3.数列的分类:

  4.数列{an}及前n项和之间的关系:

  高中数学答题技巧

  1、题型特点

  选择题突出特点就是,概念性强、数形兼备、一题多解。数量关系是数学的一个重要组成部分,也是数学考试中一项主要考点。数学研究的不仅是数,还有形,而且对数和形的研究,不是孤立的,而是将它们辩证统一起来。

  2、解题方法

  选择题的解题方法是多种多样的。可以用直选法、排除法、代入法、观察法、数形结合法等。

  直选法:对于一些简单的题目,可以直接从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选项对照来确定答案。

  排除法:从四个选项中排除掉容易判断是错误的答案,再从剩下的选项中选择。包括分析排除法和反例排除法两种:分析排除法一般用于题目条件已知,选项为计算结果的选择题;反例排除法一般用于选项为四个命题的选择题。

  代入法:如果用常规的方法求解较为困难,我们就用代入法。一般分为已知代入法、选项代入法和特殊值代入法。可以根据条件或答案中所提供的信息,选择某些特殊情况进行分析,或选择某些特殊值进行计算,或将字母参数换成具体数值代入,把一般形式变为特殊形式,再进行判断。

  对于题目答案已经有了提示的选择题,可以根据提示,用观察选项解答。

  选择题的解答方法多种多样,我们不要局限于一种方法,而要学会一题多解,通过多做题找到适合自己的方法。还有大家要知道,选择题有四个选项,如果真的不会做,无从下手,也不要空着,可以四选一,这样也有25%的可能性选对。

【审核人:站长】

收藏   加好友   生成海报   分享
点赞(0)
打赏
Tags:
评论(0人参与,0条评论) 心怡
0/0
  • 请先说点什么
    最新评论

    发布者资料

    热门文章

    高中学习

    查看更多高中学习
    首页
    栏目
    搜索
    会员
    投稿