小学学习

小学一年级数学知识点(电子版)

作者:舒淇   发表于:
浏览:20次    字数:3551  原创
级别: 文学秀才   总稿:59891篇,  月稿:0

  数学是一门基础性的科学,值得每个人去学习,尤其是孩子,更要去学习数学,并且以此来构架自己的思维体系。学数学就是在学一种思维体系,在日常教导孩子的过程中也要注重这一点。下面小编为大家带来小学一年级数学知识点,希望大家喜欢!

  

  小学一年级数学知识点

  一、6—10的认识:

  1、数数:根据物体的个数,可以用6—10各数来表示。数数时,从前往后数也就是从小往大数。

  2、10以内数的顺序:

  (1)从前往后数:0、1、2、3、4、5、6、7、8、9、10。

  (2)从后往前数:10、9、8、7、6、5、4、3、2、1、0。

  3、比较大小:按照数的顺序,后面的数总是比前面的数大。

  4、序数含义:用来表示物体的次序,即第几个。

  5、数的组成:一个数(0、1除外)可以由两个比它小的数组成。如:10由9和1组成。

  记忆数的组成时,可由一组数想到调换位置的另一组。

  二、6—10的加减法

  1、10以内加减法的计算方法:根据数的组成来计算。

  2、一图四式:根据一副图的思考角度不同,可写出两道加法算式和两道减法算式。

  3、“大括号”下面有问号是求把两部分合在一起,用加法计算。“大括号”上面的一侧有问号是求从总数中去掉一部分,还剩多少,用减法计算。

  三、连加连减

  1、连加的计算方法:计算连加时,按从左到右的顺序进行,先算前两个数的和,再与第三个数相加。

  2、连减的计算方法:计算连减时,按从左到右的顺序进行,先算前两个数的差,再用所得的数减去第三个数。

  四、加减混合

  加减混合的计算方法:计算时,按从左到右的顺序进行,先把前两个数相加(或相减),再用得数与第三个数相减(或相加)。

  小学一年级数学知识点总结

  直线:一条拉紧的细线向两方无限延伸就是直线。

  直线表示法①两大写字母法如直线AB或直线BA(字母无顺序性)

  ②小写字母法如直线a

  直线特征:

  ①直线向两方无限延伸

  ②直线没有粗细不能度量长短。

  ③两点确定一条直线

  ④两直线相交只有一个交点。

  ⑤直线无端点但有无数个点

  点与直线的位置关系:①点在直线上(也可说直线经过点)

  ②点在直线外(也可说直线不经过点)

  直线公理:过两点有一条直线,并且只有一条直线。(两点确定一条直线)

  小学一年级数学知识点汇总

  本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认识从感性逐步上升到抽象的几何图形。通过从不同方向看立体图形和展开立体图形,初步认识立体图形与平面图形的联系。在此基础上,认识一些简单的平面图形——直线、射线、线段和角。

  一、目标与要求

  1.能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;能把一些立体图形的问题,转化为平面图形进行研究和处理,探索平面图形与立体图形之间的关系。

  2.经历探索平面图形与立体图形之间的关系,发展空间观念,培养提高观察、分析、抽象、概括的能力,培养动手操作能力,经历问题解决的过程,提高解决问题的能力。

  3.积极参与教学活动过程,形成自觉、认真的学习态度,培养敢于面对学习困难的精神,感受几何图形的美感;倡导自主学习和小组合作精神,在独立思考的基础上,能从小组交流中获益,并对学习过程进行正确评价,体会合作学习的重要性。

  二、知识框架

  三、重点

  从现实物体中抽象出几何图形,把立体图形转化为平面图形是重点;

  正确判定围成立体图形的面是平面还是曲面,探索点、线、面、体之间的关系是重点;

  画一条线段等于已知线段,比较两条线段的长短是一个重点,在现实情境中,了解线段的性质“两点之间,线段最短”是另一个重点。

  四、难点

  立体图形与平面图形之间的转化是难点;

  探索点、线、面、体运动变化后形成的图形是难点;

  画一条线段等于已知线段的尺规作图方法,正确比较两条线段长短是难点。

  五、知识点、概念总结

  1.几何图形:点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形。从实物中抽象出的各种图形统称为几何图形。有些几何图形的各部分不在同一平面内,叫做立体图形。有些几何图形的各部分都在同一平面内,叫做平面图形。虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。

  2.几何图形的分类:几何图形一般分为立体图形和平面图形。

  3.直线:几何学基本概念,是点在空间内沿相同或相反方向运动的轨迹。从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,二直线平行;有无穷多解时,二直线重合;只有一解时,二直线相交于一点。常用直线与X轴正向的夹角(叫直线的倾斜角)或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。

  4.射线:在欧几里德几何学中,直线上的一点和它一旁的部分所组成的图形称为射线或半直线。

  5.线段:指一个或一个以上不同线素组成一段连续的或不连续的图线,如实线的线段或由“长划、短间隔、点、短间隔、点、短间隔”组成的双点长划线的线段。

  线段有如下性质:两点之间线段最短。

  6.两点间的距离:连接两点间线段的长度叫做这两点间的距离。

  7.端点:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。

  线段用表示它两个端点的字母或一个小写字母表示,有时这些字母也表示线段长度,记作线段AB或线段BA,线段a。其中AB表示直线上的任意两点。

  8.直线、射线、线段区别:直线没有距离。射线也没有距离。因为直线没有端点,射线只有一个端点,可以无限延长。

  9.角:具有公共端点的两条不重合的射线组成的图形叫做角。这个公共端点叫做角的顶点,这两条射线叫做角的两条边。

  一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边。

  10.角的静态定义:具有公共端点的两条不重合的射线组成的图形叫做角。这个公共端点叫做角的顶点,这两条射线叫做角的两条边。

  11.角的动态定义:一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边

  12.角的符号:角的符号:∠

  13.角的种类:角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。在动态定义中,取决于旋转的方向与角度。角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。

  锐角:大于0°,小于90°的角叫做锐角。

  直角:等于90°的角叫做直角。

  钝角:大于90°而小于180°的角叫做钝角。

  平角:等于180°的角叫做平角。

  优角:大于180°小于360°叫优角。

  劣角:大于0°小于180°叫做劣角,锐角、直角、钝角都是劣角。

  周角:等于360°的角叫做周角。

  负角:按照顺时针方向旋转而成的角叫做负角。

  正角:逆时针旋转的角为正角。

  0角:等于零度的角。

  余角和补角:两角之和为90°则两角互为余角,两角之和为180°则两角互为补角。等角的余角相等,等角的补角相等。

  对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。

  还有许多种角的关系,如内错角,同位角,同旁内角(三线八角中,主要用来判断平行)!

  14.几何图形分类

  (1)立体几何图形可以分为以下几类:

  第一类:柱体;

  包括:圆柱和棱柱,棱柱又可分为直棱柱和斜棱柱,棱柱体按底面边数的多少又可分为三棱柱、四棱柱、N棱柱;

  棱柱体积统一等于底面面积乘以高,即V=SH,

  第二类:锥体;

  包括:圆锥体和棱锥体,棱锥分为三棱锥、四棱锥以及N棱锥;

  棱锥体积统一为V=SH/3,

  第三类:球体;

  此分类只包含球一种几何体,

  体积公式V=4πR3/3,

  其他不常用分类:圆台、棱台、球冠等很少接触到。

  大多几何体都由这些几何体组成。

  (2)平面几何图形如何分类

  a.圆形

  b.多边形:三角形(分为一般三角形,直角三角形,等腰三角形,等边三角形)、四边形(分为不规则四边形,体形,平行四边形,平行四边形又分:矩形,菱形,正方形)、五边形、六……

  注:正方形既是矩形也是菱形

  

  小学一年级数学知识点(电子版)

【审核人:站长】

收藏   加好友   生成海报   分享
点赞(0)
打赏
Tags:
评论(0人参与,0条评论) 心怡
0/0
  • 请先说点什么
    最新评论

    发布者资料

    热门文章

    小学学习

    查看更多小学学习
    首页
    栏目
    搜索
    会员
    投稿